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Design and optimization of weakly-coupled few-mode fiber
with low nonlinearity
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By investigating the influence of the difference of refractive index between core and cladding (nco − ncl),
normalized frequency (V ) and core radius (α) on both the intramodal and intermodal nonlinear coefficients
(NCs) respectively, we design a novel weakly-coupled four-mode fiber with low nonlinearity. In general,
under the premise of ensuring the low NCs between two non-degenerate modes, this design can reduce
the intermodal NCs (< 0.5 W−1·km−1) between two degenerate modes and optimizes the parameters of
differential group delays (DGDs) and chromatic dispersion. The optimized few mode fiber (FMF) is eligible
for transmission and mode de-multiplexing in the receiver.
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Mode-division multiplexing (MDM) transmission in few
mode fiber (FMF) has been regarded as a very promis-
ing choice for solving the “capacity crunch”[1] resulted
from the rapid growth in data services. However, MDM
has many urgent questions need to resolve, such as mode
multiplexing and de-multiplexing, nonlinear effects, and
mode coupling.

The requirements for FMF are similar to single-mode
fiber (SMF): low attenuation, low loss, low nonlin-
earity (i.e., high effective area), and high dispersion
coefficient[2]. However, there are also some special needs
for designing a weakly-coupled FMF compared to SMF.
Firstly, for the weakly-coupled FMF used for uncou-
pled MDM transmissions, large differential group delays
(DGDs) are needed to use the multiple input, multiple
output (MIMO) digital signal processing (DSP) with low
complexity at the receiver side[3,4]. Moreover, a large
difference of effective refractive index between any two
modes help ensure the low mode coupling. The new de-
sign tradeoffs and MIMO DSP technology[5] have to be
considered to process mode coupling, but actually the
mode mixing arising from the Kerr nonlinear effects[6].
So it is worthy to design a FMF with low nonlinearity on
the structure and large DGD.

Previous reported methods and techniques for design-
ing FMF[7−11] give us a good possibility to investigate
the performances of FMF. However, most of these stud-
ies on nonlinear related work only involves the definition

and simple calculations. In this letter, we investigate
the relationship between nonlinearity coefficients (NCs)
and many parameters respectively, and propose a method
for designing weakly-coupled FMF with low nonlinearity
(low intermodal NCs). Based on these investigations,
we design a four-mode fiber with optimized DGD and
other parameters, which is suitable for weakly-coupled
few mode multiplexed systems.

The degenerate and non-degenerate linear modes are
approximate solution at the state of weak wave guide
in step-index fiber, and the number of the propagation
mode is completely decided by the normalized frequency,
V = 2πα/λ

√
n2

co − n2
cl, where nco and ncl are the refrac-

tive indexes of the core and the cladding, α is the core
radius, and λ is the wavelength respectively.

We choose V = 5.1 for 4-mode transmission resulted
from the mode power distribution. The 4 guided-mode
in FMF could provide 6 spatial modes (include two pairs
degenerate linear modes) and 2 polarization directions
for MDM transmission. So it could offer an increasing
transmission capacity with 6 times compared with the
standard step-index single-mode fiber (S-SMF).

On the one hand, high (neff,lm − ncl) could ensure
low macro-bend losses for the 4 LPlm modes, and large
|neff,lm − neff,l′m′ | between any two LPlm and LPl′m′

modes is used to limit mode coupling[9]. On the other
hand, small intramodal nonlinear effects and low losses
could be ensured by large Aeff .

Table 1. Simulation of 4-mode FMF

V =5.1, λ = 1.55 μm LP01 LP11a(LP11b) LP21a(LP21b) LP02

neff − ncl (×10−3) 6.094 4.431 2.324 1.709

DGD vs LP01 (ps/m) 0 3.498 6.809 4.761

Chromatic Dispersion (ps·nm−1km−1) 10.94 12.38 10.00 0.11

Cable Cutoff Wavelength (nm) / 2648 1836 1820

Macro-Bend Loss (10-mm bend loss) (dB/m) < 0.001 0.005 15.621 938.867

Aeff (μm2) 160.1 152.7 (151.7) 171.4 (170.3) 162.2

γ-intramodal (W−1km−1) 0.658 0.690 (0.695) 0.615 (0.619) 0.650
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The parameter values of the step-index optical fiber
were obtained by modeling this following properties: core
radius α = 8.5 μm and nco − ncl = 7.2 × 10−3. Tables 1
and 2 are the relevant parameters. Particularly, data in
parentheses are corresponding to the modes of LP11b or
LP21b in the parentheses above.

To ensure small intermodal nonlinear effects in the
fiber, and also well-separated non-degenerate modes at
the receiver side, the DGDs between any two LPlm and
LPl′m′ modes are required[3]:

DGD =
(neff.lm − neff.l′m′

c

)

− λ

c

(∂neff.lm

∂λ
− ∂neff.l′m′

∂λ

)
>> 0.1 ps/m. (1)

And model used for bend loss formula is

2α =

√
πk2 exp

[
− 2

3

(
γ3

β2
g

)
R

]

evγ3/2
√
RKV −1(γα)KV +1(γα)

, (2)

where γ = (β2
g − n2

2k
2)1/2, κ = (n2

1k
2 − β2

g)1/2, R is the
radius of curvature, and βg is the propagation constant
of the guided mode in the straight guide. The K terms
are modified Bessel functions, and ν is azimuthal mode
number[12].

The Kerr nonlinear effect between two modes is often
associated with the overlap integral fpq:

fpq =
∫∫ |FP(x, y)|2|Fq(x, y)|2dxdy∫∫ |Fp(x, y)|2dxdy ∫∫ |Fq(x, y)|2dxdy , (3)

where the modes functions Fp(x, y) and Fq(x, y) give
the electric field distribution of the two modes respec-
tively. The electric field distribution of degenerate modes
(LPmla and LPmlb) here are expressed by ψm1a(γ, θ) =
ψm1(γ) cos(θ) and ψm1b(γ, θ) = ψm1(γ) sin(θ) respec-
tively. The NC between the two modes is defined as

γpq =
n2w0fpq

c

n2w0

cAeff.pq
, (4)

where n2 is the nonlinear refractive index of silicon, which
is about 2.6 × 10−20 m2/W; ω0 is the angular frequency
of the carrier light and c is the speed of light[7].

Obviously, modes LP11a and LP11b have equal inter-
modal NC with LP01 or LP02 respectively, as well as
modes LP21a and LP21b. We use the symbol LPm1a/b

sign LPm1a or LPm1b. There is a clear confirmation for
the intermodal effective area between two degenerate spa-
tial modes which is 3 times larger than the intramodal
effective area respectively[8], namely:

Aeff,pq = 3 · Aeff,p = 3 ·Aeff,q. (5)

Besides, as shown from Table 2, Aeff between LP11a

and LP21a has a tiny difference with the one between

LP11b and LP21b. This is because the angle between
LP11a and LP21a is different from the angle between
LP11b and LP21b. Moreover, with a largest intermodal
NC, the nonlinear crosstalk between LP01 and LP02

might be more serious, which due to their largest regions
of overlapped mode field.

Under the premise of ensuring the low NCs between
two non-degenerate modes, low intermodal NCs between
two degenerate modes could better ensure low nonlinear-
ity for the weakly-coupled FMF, which is also preferable
for independent transmission with low crosstalk between
two non-degenerate linear modes. So we simulate the
two categories of Kerr NCs on many cases of only one
variable changes, and the relationship between all of
NCs and the carrier light wavelength are shown in Fig.
1. Obviously, the intramodal NCs are more sensitive to
wavelength and it also quickly reduced.

For the four linear polarized (LP) modes, LP11 has the
biggest intramodal NCs, followed are LP01, LP02, and
LP21. Here the γ−LP11a curve has a tiny drop below
the γ−LP11b, and it is same to the LP21a and LP21b.
Further, the intramodal NCs could close to 1 if the core
radius (α) decrease, but the intermodal NCs near 0.5.

Through our calculations, we also prove that the chro-
matic dispersion will decrease even to a negative value
for one mode as the decreasing of nco − ncl, Thus we
could use this rule to design the dispersion compensation
fiber.

From Fig. 2(a), for a fixed V and α, all of NCs are un-
changed (virtually, they have several of ten thousandth
difference if nco−ncl has a big difference) within the valid

Fig. 1. (Color online) (a) Intramodal and (b) intermodal NCs
as functions of wavelength respectively.

Table 2. Intermodal NCs of 4-Mode FMF

Aeff and Nonlinear LP01V LP01V LP01V LP02V LP02V LP11aV LP21aV LP11aV LP21aV LP11aV LP11bV

Effects of Intermodals LP11a/b LP21a/b LP02 LP11a/b LP21a/b LP11b LP21b LP21b LP11b LP21b LP21b

Aeff.pq (μm2) 242.2 348.8 215.9 426.9 469.3 459.74 515.98 262.42 262.42 259.85 259.82

γ−intermodal (W−1km)−1 0.435 0.302 0.488 0.247 0.225 0.2292 0.2043 0.4016 0.4016 0.4056 0.4056
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Fig. 2. (Color online) NCs as functions of (a) nco − ncl when
V = 5.1 and α = 8.5 μm, (b) the normalized frequency (V )
when α = 8.5 μm, and (c) core radius α when V = 5.1 at
nco − ncl = 7.5 × 10−3 and 1550 nm respectively.

range of nco − ncl. And a large value of nco − ncl at the
state of weak wave guide is better to get a big numerical
aperture.

Based on the above analysis, we choose nco − ncl =
7.5 × 10−3 to study the relationship between NCs and
normalized frequency V as show in Fig. 2(b), which has
a apparent growth with V rising, and the intramodal
NCs are growing faster than the intermodal, that can
be reflected by the Δmean line directly (Δmean gives a
difference between the mean of all the intra modal NCs
and the mean of all the intermodal NCs). The result
also could prove the mode power distribution theory in-
directly (more mode power concentrate on the core when
V growing large). Although larger mode power density
in fiber core is disadvantage for low nonlinearity, it is
beneficial for long-haul transmission due to the low loss.
Figure 2(c) shows the trend of NCs within the different
core radius (α), and it is a similar but decreasing trend
along with the α growing. Moreover, the intramodal
NCs are more sensitive to α than intermodal NCs, so a
proper selection of α is very necessary.

By using the above result of reducing fiber nonlinearity,
we optimize this four-mode FMF to pursue weak coupling
between any two modes. Through extensive simulations,
a relative equilibrium difference between any two neff,lm

and low chromatic dispersions (shown in Table 1) are ob-

tained. The large DGDs between non-degenerate modes
is required in uncoupled MDM link over weakly-coupled
FMF, to enable the low-complexity 2×2 or 4×4 MIMO
to be used at the receiver side.

In conclusion, we design a weakly-coupled FMF with
low nonlinearity. Through simulating the two categories
of Kerr nonlinear effects: intramodal and intermodal
NCs, we draw some simple and useful conclusions: lower
normalized frequency V for 4-mode FMF is suitable selec-
tion to get low nonlinearity, but a large one is necessary
for long-haul transmission. NCs are unchanged within a
rang value of nco − ncl, so a large value of nco − ncl at
the state of weak guide is preferable. Big core radius (α)
seems better if we have enough capacity of compensa-
tion in the receiver. Under the premise of ensuring the
low NCs between two non-degenerate modes, we reduce
the intermodal NCs (<0.5 W−1·km−1) between two de-
generate modes, and optimize the parameters of DGDs
and chromatic dispersion. Compared with the previous
reported FMF, the performances of the 4-mode FMF
we designed with lower mode coupling and lower NCs
are more superior, and it is also more eligible for weakly
coupled few-mode transmission.
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